Thermoelastic problem ========================== 1. PDE ------------- The variational form for the thermoelastic problem is .. math:: \int_{\Omega} \kappa \nabla T \nabla \hat{T} d x + \int_{\Omega} \sigma:\nabla v d x -\int_{\partial \Omega}\kappa(T \cdot n) \hat{T} d \partial \Omega -\int_{\partial \Omega}(\sigma \cdot \eta) \cdot v d s=0, where the :math:`\sigma`, :math:`v` are the stress tenser and the test functions for the displacements; :math:`T` and :math:`\hat{T}` are the function and the test functions for the temperature field. 1. Code ------------- .. code-block:: python import dolfin as df def get_residual_form(u, v, rho_e, T, T_hat, KAPPA, k, alpha, mode='plane_stress', method='RAMP'): if method=='RAMP': C = rho_e/(1 + 8. * (1. - rho_e)) else: C = rho_e**3 E = k * C # C is the design variable, its values is from 0 to 1 nu = 0.3 # Poisson's ratio lambda_ = E * nu/(1. + nu)/(1 - 2 * nu) mu = E / 2 / (1 + nu) #lame's parameters if mode == 'plane_stress': lambda_ = 2*mu*lambda_/(lambda_+2*mu) I = df.Identity(len(u)) w_ij = 0.5 * (df.grad(u) + df.grad(u).T) - alpha * I * T v_ij = 0.5 * (df.grad(v) + df.grad(v).T) d = len(u) sigm = lambda_*df.div(u)*df.Identity(d) + 2*mu*w_ij a = df.inner(sigm, v_ij) * df.dx + \ df.dot(C*KAPPA* df.grad(T), df.grad(T_hat)) * df.dx return a