Tensor-Vector Inner Product using Einsum
This is an example of how to properly use the einsum function to compute a tensor-vector inner product.
from csdl_om import Simulatorimport numpy as npfrom csdl import Modelimport csdl
class ExampleInnerTensorVector(Model):
def define(self): a = np.arange(4) vec = self.declare_variable('a', val=a)
# Shape of Tensor shape3 = (2, 4, 3) c = np.arange(24).reshape(shape3)
# Declaring tensor tens = self.declare_variable('c', val=c)
# Inner Product of a tensor and a vector self.register_output( 'einsum_inner2', csdl.einsum_new_api( tens, vec, operation=[('rows', 0, 1), (0, ), ('rows', 1)], ))
sim = Simulator(ExampleInnerTensorVector())sim.run()
print('a', sim['a'].shape)print(sim['a'])print('c', sim['c'].shape)print(sim['c'])print('einsum_inner2', sim['einsum_inner2'].shape)print(sim['einsum_inner2'])
[0. 1. 2. 3.]c (2, 4, 3)[[[ 0. 1. 2.] [ 3. 4. 5.] [ 6. 7. 8.] [ 9. 10. 11.]]
[[12. 13. 14.] [15. 16. 17.] [18. 19. 20.] [21. 22. 23.]]]einsum_inner2 (2, 3)[[ 42. 48. 54.] [114. 120. 126.]]