Single Tensor Summation using Einsum with Sparse PartialsΒΆ
This is an example of how to properly use the einsum function to compute the summation of a single vector while using sparse partial derivative.
from openmdao.api import Problem
import numpy as np
from omtools.api import Group
import omtools.api as ot
class ExampleTensorSummationSparse(Group):
def setup(self):
# Shape of Tensor
shape3 = (2, 4, 3)
c = np.arange(24).reshape(shape3)
# Declaring tensor
tens = self.declare_input('c', val=c)
self.register_output(
'einsum_summ2_sparse_derivs',
ot.einsum_new_api(tens,
operation=[(33, 66, 99)],
partial_format='sparse'))
prob = Problem()
prob.model = ExampleTensorSummationSparse()
prob.setup(force_alloc_complex=True)
prob.run_model()
print('c', prob['c'].shape)
print(prob['c'])
print('einsum_summ2_sparse_derivs', prob['einsum_summ2_sparse_derivs'].shape)
print(prob['einsum_summ2_sparse_derivs'])
c (2, 4, 3)
[[[ 0. 1. 2.]
[ 3. 4. 5.]
[ 6. 7. 8.]
[ 9. 10. 11.]]
[[12. 13. 14.]
[15. 16. 17.]
[18. 19. 20.]
[21. 22. 23.]]]
einsum_summ2_sparse_derivs (1,)
[276.]