Inner Product between a Tensor and a VectorΒΆ
This is an example of how to use the omtools inner function to compute the inner product between a tensor and a vector.
from openmdao.api import Problem
from omtools.api import Group
import omtools.api as ot
import numpy as np
class ExampleTensorVector(Group):
def setup(self):
m = 3
n = 4
p = 5
# Shape of the vectors
vec_shape = (m, )
# Shape of the tensors
ten_shape = (m, n, p)
# Values for the two vectors
vec1 = np.arange(m)
# Number of elements in the tensors
num_ten_elements = np.prod(ten_shape)
# Values for the two tensors
ten1 = np.arange(num_ten_elements).reshape(ten_shape)
# Adding the vector and tensor to omtools
vec1 = self.declare_input('vec1', val=vec1)
ten1 = self.declare_input('ten1', val=ten1)
# Tensor-Vector Inner Product specifying the first axis for
# Vector and Tensor
self.register_output(
'TenVecInner',
ot.inner(ten1, vec1, axes=([0], [0])),
)
prob = Problem()
prob.model = ExampleTensorVector()
prob.setup(force_alloc_complex=True)
prob.run_model()
print('vec1', prob['vec1'].shape)
print(prob['vec1'])
print('ten1', prob['ten1'].shape)
print(prob['ten1'])
print('TenVecInner', prob['TenVecInner'].shape)
print(prob['TenVecInner'])
vec1 (3,)
[0. 1. 2.]
ten1 (3, 4, 5)
[[[ 0. 1. 2. 3. 4.]
[ 5. 6. 7. 8. 9.]
[10. 11. 12. 13. 14.]
[15. 16. 17. 18. 19.]]
[[20. 21. 22. 23. 24.]
[25. 26. 27. 28. 29.]
[30. 31. 32. 33. 34.]
[35. 36. 37. 38. 39.]]
[[40. 41. 42. 43. 44.]
[45. 46. 47. 48. 49.]
[50. 51. 52. 53. 54.]
[55. 56. 57. 58. 59.]]]
TenVecInner (4, 5)
[[100. 103. 106. 109. 112.]
[115. 118. 121. 124. 127.]
[130. 133. 136. 139. 142.]
[145. 148. 151. 154. 157.]]