Thermoelastic problem¶
1. PDE¶
The variational form for the thermoelastic problem is
\[\int_{\Omega} \kappa \nabla T \nabla \hat{T} d x
+ \int_{\Omega} \sigma:\nabla v d x
-\int_{\partial \Omega}\kappa(T \cdot n) \hat{T} d \partial \Omega
-\int_{\partial \Omega}(\sigma \cdot \eta) \cdot v d s=0,\]
where the \(\sigma\), \(v\) are the stress tenser and the test functions for the displacements; \(T\) and \(\hat{T}\) are the function and the test functions for the temperature field.
1. Code¶
import dolfin as df
def get_residual_form(u, v, rho_e, T, T_hat, KAPPA, k, alpha, mode='plane_stress', method='RAMP'):
if method=='RAMP':
C = rho_e/(1 + 8. * (1. - rho_e))
else:
C = rho_e**3
E = k * C
# C is the design variable, its values is from 0 to 1
nu = 0.3 # Poisson's ratio
lambda_ = E * nu/(1. + nu)/(1 - 2 * nu)
mu = E / 2 / (1 + nu) #lame's parameters
if mode == 'plane_stress':
lambda_ = 2*mu*lambda_/(lambda_+2*mu)
I = df.Identity(len(u))
w_ij = 0.5 * (df.grad(u) + df.grad(u).T) - alpha * I * T
v_ij = 0.5 * (df.grad(v) + df.grad(v).T)
d = len(u)
sigm = lambda_*df.div(u)*df.Identity(d) + 2*mu*w_ij
a = df.inner(sigm, v_ij) * df.dx + \
df.dot(C*KAPPA* df.grad(T), df.grad(T_hat)) * df.dx
return a